Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion.
نویسندگان
چکیده
Gamete fusion is the fundamental first step initiating development of a new organism. Female mice with a gene knockout for the tetraspanin CD9 (CD9 KO mice) produce mature eggs that cannot fuse with sperm. However, nothing is known about how egg surface CD9 functions in the membrane fusion process. We found that constructs including CD9's large extracellular loop significantly inhibited gamete fusion when incubated with eggs but not when incubated with sperm, suggesting that CD9 acts by interaction with other proteins in the egg membrane. We also found that injecting developing CD9 KO oocytes with CD9 mRNA restored fusion competence to the resulting CD9 KO eggs. Injecting mRNA for either mouse CD9 or human CD9, whose large extracellular loops differ in 18 residues, rescued fusion ability of the injected CD9 KO eggs. However, when the injected mouse CD9 mRNA contained a point mutation (F174 to A) the gamete fusion level was reduced fourfold, and a change of three residues (173-175, SFQ to AAA) abolished CD9's activity in gamete fusion. These results suggest that SFQ in the CD9 large extracellular loop may be an active site which associates with and regulates the egg fusion machinery.
منابع مشابه
Residues SFQ ( 173 - 175 ) in the large extracellular loop of CD 9 are required for gamete fusion
Sperm-egg binding and fusion initiate the development of a new organism, but the molecular mechanisms of gamete adhesion, gamete membrane fusion and associated signaling are still poorly understood. Recently, one egg surface protein, CD9, was shown to be essential for gamete fusion. The fertility of CD9-deficient female mice is severely reduced because membrane fusion ability is lost in CD9-def...
متن کاملDirect binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion.
The function currently attributed to tetraspanins is to organize molecular complexes in the plasma membrane by using multiple cis-interactions. Additionally, the tetraspanin CD9 may be a receptor that binds the soluble ligand PSG17, a member of the immunoglobulin superfamily (IgSF)/CEA subfamily. However, previous data are also consistent with the PSG17 receptor being a CD9 cis-associated prote...
متن کاملSperm-Egg Fusion: A Molecular Enigma of Mammalian Reproduction
The mechanism of gamete fusion remains largely unknown on a molecular level despite its indisputable significance. Only a few of the molecules required for membrane interaction are known, among them IZUMO1, which is present on sperm, tetraspanin CD9, which is present on the egg, and the newly found oolema protein named Juno. A concept of a large multiprotein complex on both membranes forming fu...
متن کاملCD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization.
CD9 tetraspanin is the only egg membrane protein known to be essential for fertilization. To investigate its role, we have measured, on a unique acrosome reacted sperm brought in contact with an egg, the adhesion probability and strength with a sensitivity of a single molecule attachment. Probing the binding events at different locations of wild-type egg we described different modes of interact...
متن کاملDistinct Regions of the Large Extracellular Domain of Tetraspanin CD9 Are Involved in the Control of Human Multinucleated Giant Cell Formation
Multinucleated giant cells, formed by the fusion of monocytes/macrophages, are features of chronic granulomatous inflammation associated with infections or the persistent presence of foreign material. The tetraspanins CD9 and CD81 regulate multinucleated giant cell formation: soluble recombinant proteins corresponding to the large extracellular domain (EC2) of human but not mouse CD9 can inhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 129 8 شماره
صفحات -
تاریخ انتشار 2002